ACADEMIE	DE POITIERS	Sessio	on Juin 1999	
SPECIALITE :	GROUPE I	Coef:	Durée	2 H 00
EPREUVE :	Mathématiques - Sciences	Mathématiques - Sciences physiques		uille : 1/6

BEP + BEP/CAP associés **Mathématiques-Sciences physiques** Groupe I

Diplômes concernés:

INTITULE

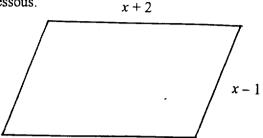
BEP Electrotechnique

CAP Electrotechnique

BEP Installateur conseil en équipement du foyerDominante Produits blancs

Dominante Produits bruns

ACADEMIE	DE POITIERS	Sessi	on Juin j	<u> 1999</u>	
SPECIALITE :	GROUPE I	Coef :	D	urée	2 H 00
EPREUVE :	Mathématiques - Sciences physiques Feuille			iille : 2/6	


La clarté des raisonnements, la qualité de la rédaction et la précision des résultats interviendront dans l'appréciation des copies. L'usage des instruments de calcul est autorisé

MATHEMATIQUES

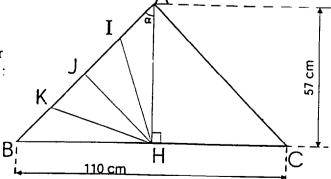
EXERCICE 1

Soit le parallélogramme représenté ci-dessous.

Les cotes sont en cm

- 1. Exprimer le périmètre de ce parallélogramme en fonction de x.
- 2. Si son périmètre est de 42 cm, calculer x.

EXERCICE 2


On considère la courbe (C) représentée dans le repère orthonormé en ANNEXE 1.

- 1. Placer les points A (-2; -1) et B (3; 1,5) dans le repère en Annexe 1. Tracer la droite (AB).
- 2. Donner l'équation de la droite (AB). Justifier votre réponse.
- 3. Déterminer graphiquement les coordonnées des points d'intersection de la courbe (C) et de la droite (AB). Les tracés seront apparents.
- 4. La courbe (C) passe par les points de coordonnées (0; 3) et (3; -1,5). Son équation est de la forme $y = ax^2 + c$. Déterminer les coefficients a et c.

EXERCICE 3

Un cerf-volant est schématisé par le triangle isocèle ABC ci-contre :

$$AI = IJ = JK = KB$$
.

1. Calculer BH, puis AB (au cm près par excès).

BEP	САР
0,5	1
0,5	1

0,5 0,5	1
1	

2

1

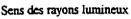
3

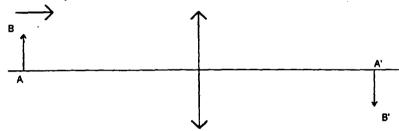
ACADEMIE	DE POITIERS	Session	ı Juin 1	999	
SPECIALITE :	GROUPE I	Coef : Durée		2 H 00	
EPREUVE :	Mathématiques - Sciences phys	Mathématiques - Sciences physiques Feuille		Jille : 3/6	

EPREUVE :	EPREUVE: Mathématiques - Sciences physiques		Feuille : 3/6	
		BEP	CAP	
2. Calculer au degré pro	ès, la mesure α de l'angle \widehat{BAH} .	1	2	
3. Calculer, au cm près.	, IH.	2		
	SCIENCES PHYSIQUES	_		
EXERCICE 1 (à traiter par te	outes les spécialités).			
OXYDOREDUCTION				
	ner une solution acqueuse de nitrate d'argent (AgNO ₃). s ions H ⁺ et OH -, les autres ions présents dans la solution ?	0,5	1	
minutes,	de cuivre bien décapée dans cette solution. Au bout de quelques pôt métallique d'argent. On peut faire l'interprétation suivante :			
* l'atome de cuivre a correspondante.	cédé deux électrons. Ecrire la demi-équation électronique électron. Ecrire la demi-équation électronique correspondante.	0,5 0,5	1	
	bilan de cette réaction d'oxydoréduction.	0,5		
c) Les ions nitrates NO ₃ Quelles sont les autres EXERCICE 2 (à traiter par to	s ions présents dans la solution finale hormis OH – et H +.			
, <u>-</u>	menée de pièce sur une machine outil est constitué de trois phases :			
	v en m/s 0,3 0,1			
1. Phase II (à vitesse cons	0 1 2 3 tens	0,5	1	
a) Déterminer d'après le g	graphique la vitesse v de la pièce pendant cette phase et sa durée.	0,5	1	

b) Calculer la distance parcourue par la pièce pendant cette phase.

ACADEMIL	E DE POITIERS	<u>Sessio</u>	n Juin ;	1999	
SPECIALITE :	GROUPE I	Coef :	L)urée	2 H 00
EPREUVE :	Mathématiques - Sciences physiques Feui			ille : 4/6	


2. Phase I (mouvement uniformément accéléré)


- a) Déterminer d'après le graphique la durée de cette phase.
- b) Déterminer l'accélération de la pièce pendant cette phase.
- c) Calculer la distance parcourue pendant cette phase.

On donne:
$$e = v.t$$
; $a = v.t$; $e = \frac{1}{2} at^2$

EXERCICE 3 (à traiter par les métiers des industries graphiques)

Une lentille convergente de distance focale inconnue donne d'un objet [AB] une image [A' B'] de même taille et renversée.

- 1. Calculer le grandissement.
- 2. Tracer directement sur la figure en annexe 2 :
 - * le rayon lumineux passant par le point B et le centre optique,
 - * le rayon lumineux passant par le point B et parallèle à l'axe optique.
- 3. En déduire la position du foyer image F', et placer le foyer objet F.
- 4. Déterminer graphiquement la distance focale de cette lentille. (1 cm sur la figure représente 5 cm en réalité).
- 5. Calculer la vergence de cette lentille.

İ		
İ		
	0,5	1
	0,5	2
	1	0,5
	1	0,5
	0,5	

BEP

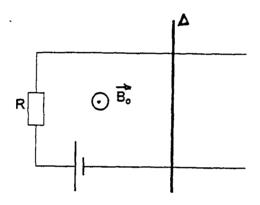
0,5

1

1

CAP

1

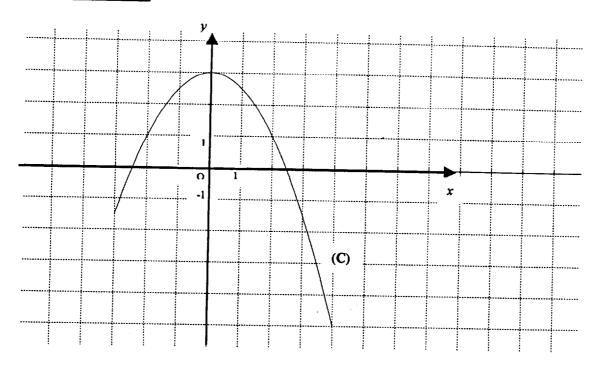

ACADEMIE DE POITIERS		Session Juin 1999			
SPECIALITE :	GROUPE I	Coef:	D	urée	2 H 00
EPREUVE :	Mathématiques - Sciences physiques		Fer	uille : 5/6	

EXERCICE 4

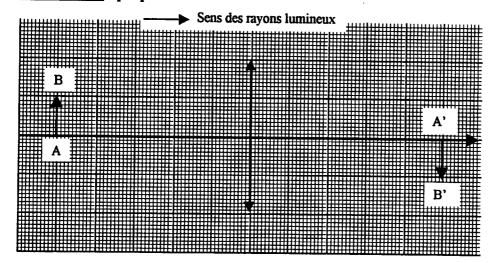
(à traiter par les Electrotechniques et les Installateurs Conseils en Equipements du Foyer)

ELECTROMAGNETISME

Une tige Δ , conductrice d'électricité, de longueur 10 cm, se déplace sans frottement sur deux rails rectilignes reliés par une résistance $R=10~\Omega$ et un générateur de tension continue U=24~V. Ce circuit est placé dans un champ magnétique B_0 d'intensité 0,5 T.


- 1. Calculer l'intensité du courant traversant la tige Δ .
- 2. Déterminer les caractéristiques de la force de Laplace exercée sur la tige : direction, sens et intensité.
- 3. Déterminer toutes les caractéristiques que devrait avoir le vecteur $\overline{B_0}$ pour que la force appliquée au conducteur soit dirigée vers la droite et que son intensité soit de 0,24 N.

On donne: $F = B_0 I \ell \sin \alpha$ avec $\alpha = (\vec{I}; \vec{B})$.


i	
0,5	2
1,5	2
1,5	

CAP

ANNEXE I

ANNEXE II optique

