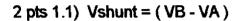
B.E.P ELECTRONIQUE 99 CORRIGE DE L' EPREUVE: E.P.3

9 DOCUMENTS REMIS

CANDIDATS EN FORMATION INITIALE TOTAL /40 pts


CANDIDAT EN FORMATION CONTINUE TOTAL /50 pts

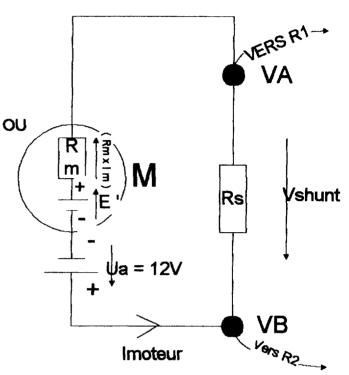
POUR LES CANDIDATS EN FORMATION CONTINUE IL CONVIENDRA D'APPLIQUER LE COEFFICIENT DE 4/5 POUR OBTENIR UNE NOTE SUR 40 POINTS.

LA NOTE SERA DANS TOUS LES CAS ARRONDIE AU POINT SUPERIEUR S' IL ELLE N' EST PAS ENTIERE.

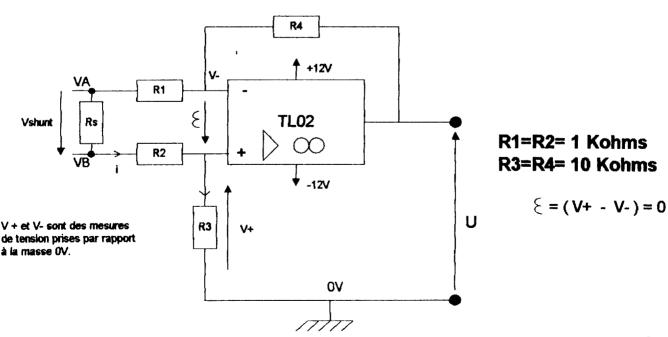
CORRIGE EPREUVE EP3 BEP ELECTRONIQUE 1999 ACADEMIE DE LILLE

QUESTION N°01: CONVERSION COURANT/TENSION 10 POINTS

2 pts 1.2) Ua - (Rs x Imoteur) - (Rm x Imoteur) - E' = 0 OU
Ua - (Vshunt) - (Rm x imoteur) - E' = 0


2 pts 1.3) Vshunt = Rs x I moteur

2 pts 1.4) Imoteur =
$$(E - E')/(Rm + Rs) = (12 - 10.8)/(1.4 + 0.1) = 0.8 A$$


2 pts 1.5) Vshunt = ((E - E')x RS))/(Rs + Rm) = 0.08 V P = U x U / R = 0.08 x 0.08 / 0.1 = 0.064 W

> OU P = Vshunt x I = 0.08 V x 0. 8 A = 0.064 W

OU P = Rs x I x I = 0.1 x 0.8 x 0,8 = 0,064 W

QUESTION N°02: SCHEMA DE LACONVERSION COURANT/TENSION 10 POINTS PARTIE LITTERALE

CORRIGÉ

ACADEMIE DE LILLE - B.E.P. ELECTRONIQUE - ANNEE 1999 CORRIGÉ EPS PAGE 1/09 CORRIGE

QUESTIONS N°02 10 POINTS CONVERSION COURANT/TENSION PARTIE LITTERALE.

2 points 2.1)
$$VA = 0$$
 $V' - = (U \times R1)/(R1 + R4)$

2 points 2.2)
$$U = 0$$
 $V'' - = (VA x R4) / (R1 + R4)$

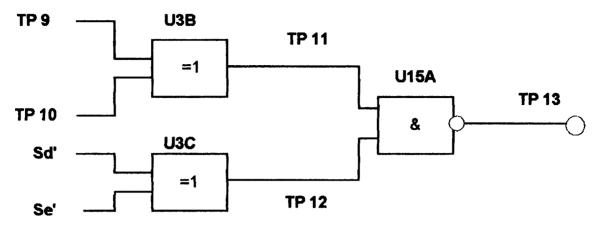
$$V = (U \times R1) / (R1+R4) + (VA \times R4) / (R3 + R4)$$

$$V+ = (VB \times R3) / (R2 + R3)$$

$$\frac{U \times R1}{(R1 + R4)} + \frac{VA \times R4}{(R1+R4)} = \frac{VB \times R3}{(R2 + R3)}$$

QUESTIONS N°03 10 POINTS CONVERSION COURANT/TENSION PARTIE NUMERIQUE.

$$A = 10000/1000 = 10$$


$$U = 10 (VB - VA)$$

$$U = K x Imoteur = 10 x Rs x Imoteur$$

II vient
$$K = 10 \times Rs$$
 $K = 10 \times 0.1 = 1$

QUESTION N°04 10 POINTS

4) DETECTION DE TP13:

1 POINT

4.1) Représenter ce schéma en respectant la normalisation en vigueur.

Voir ci-dessus

0.5 POINT

4.2) U15A EST UNE FONCTION NON ET OU NAND

1 POINT 4.3) Table de vérité de TP13 en fonction de TP11 et de TP12

TP11	TP12	TP13	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

- 0.5 POINT
- 4.4) TP13 = TP11 . TP12 ou TP = TP11 + TP13
- 0.5 POINT
- 4.5) La fonction de U3B ET UNE FONCTION OU EXCLUSIVE
- 1 POINT 4.6) TRACER LA TABLE DE VERITE DE TP11 EN FONCTION DE TP9 ET TP1

TP9	TP10 TP11		
0	0 0		
0	1	1	
1	0	1	
1	1	0	

4.7) DONNER L'EQUATION DE TP11 EN FONCTION DE TP9 ET TP 10

CORRIGÉ

SUITE DE LA QUESTION N°04

4.8.) Si TP9 = sd' = 0 et TP = Se' = 1

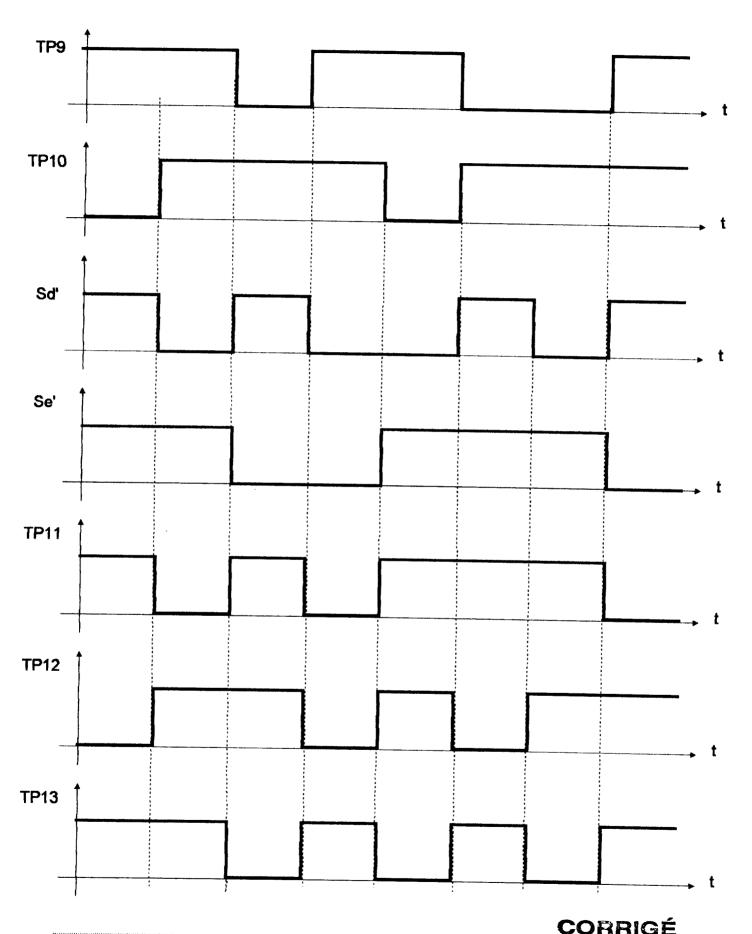
Quel est l' état logique de:

0.5 POINT 0.5 POINT

4..8.1) TP11 = 1

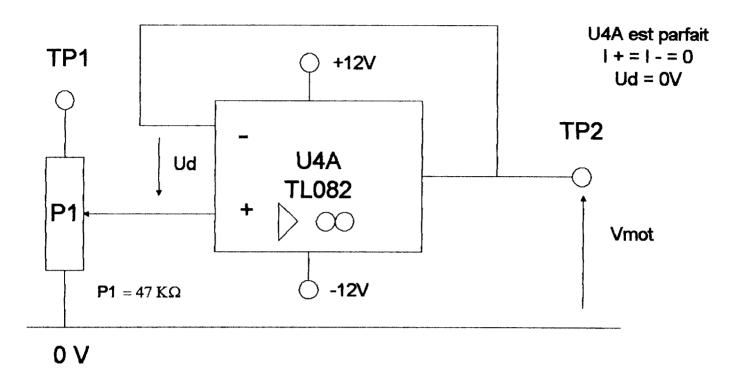
DINT 4.

4.8.2) TP12 = 1


0.5 POINT

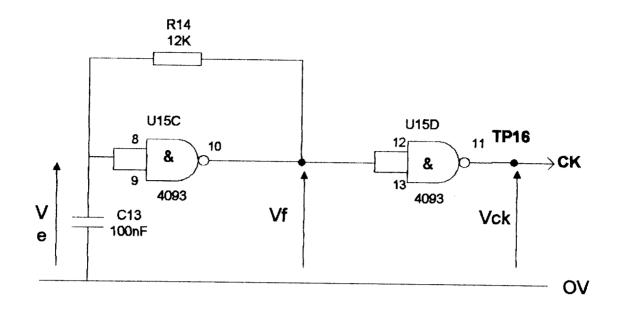
4.8.3) TP13 = 0

3 POINTS

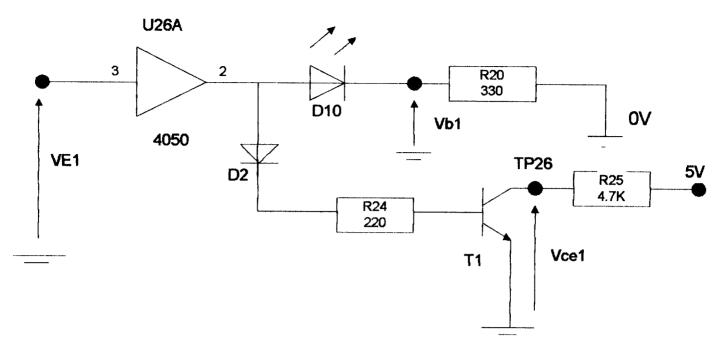

4.9) VOIR LES CHRONOGRAMMES FOURNIS

Remplir les chronogrammes de TP11, TP12, TP13

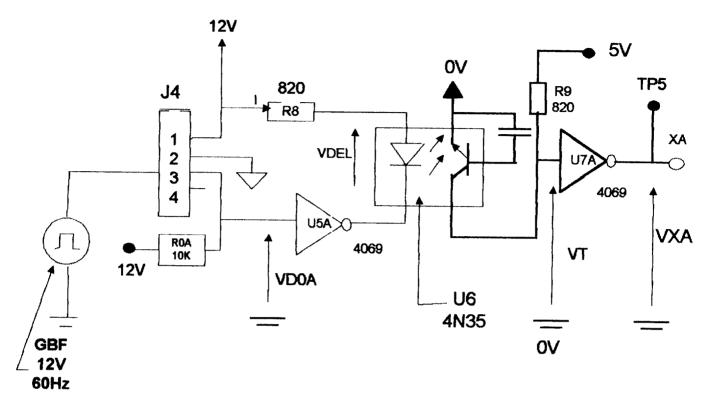
ACADEMIE DE L'ILLE « B.E.P. ELECTRONIQUE » ANNEE 1999 CORRIGE EPS «PAGE 5/09 CORRIGE


QUESTION N°05 10 POINTS

5.1) Exprimer la tension V+ sur l'entrée + du Circuit intégré U4A, en fonction de VTP1, pour les positions extrèmes et médianes du curseur.


5.1.1) Curseur en TP1. V+ = VTP1 1 POINT 5.1.2) Curseur à la masse. V+ = 0 V 1 POINT 5.1.3) Curseur en position médiane. V+ = VTP1 / 2 1 POINT 2 POINTS 5.2) Quelle est la structure composée de U4A et P1 ? Montage suiveur de tension 5.3) Pourquoi utiliser une telle structure? 2 POINTS Adapter en impédance ou Ze grande et Zs=0 5.4) En déduire Vmot, pour les 3 positions du curseur si VTP1 = 12 V 1 POINT 5.4.1) Curseur en TP1: Vmot =12..V POINT 5.4.2) Curseur à la masse: Vmot =...0.V 1 POINT 5.4.3) Curseur en position médiane: Vmot = 6..V

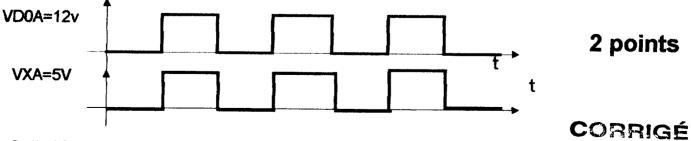
QUESTIONS N°06 10 POINTS PRODUCTION DE CK


- 1 point 6.1) La fonction logique représente une fonction NAND ou NON ET
- 1 point 6.2) Ce circuit NAND a des entrées triggerisées, elle bascule pour 2 niveaux d'entrée différents, ViL et ViH.
- 1 point 6.3) Pour VDD = 5V Vil = 2, 2V ViH = 2, 3. V suivant catalogue.
 1 point
- 1 point 6.4) si C13 est complétement déchargé, Vf = 1
- 1 point 6.5) Dans ces conditions, CK = 0
- 1 point 6.6) Oui le condensateur C13 se charge.
- 2 points 6.7) Puisque C13 se charge au travers de R14, Ve augmente jusqu'à atteindre la valeur ViH. Lorsque Ve atteind ViH, U15C passe à létat 0 en sortie. C13 se décharge dand R14 et la sortie de la NAND jusqu'à atteindre ViL. A ce moment là, la sortie de la NAND repasse à 1 et le cycle recommence.
- **1 point** 6.8) La période T = 0.00072 s = 0.72 ms
- 1 point 6.9) F = 1/T = 1388 Hz = 1.388 Khz = 1.4 Khz

QUESTION N°07 AFFICHAGE DE LA VIRGULE 10 POINTS

- 1 point 7.1) U26a est un buffer ou amplificateur en courant.
- 2 points 7.2) Ce composant amplifie en courant. Il permet de débiter en sortie un courant supérieur à celui du compteur qui le précède. Il peit donc alimenter sans danger D10, R20 et D2, R24 et le transistor.
- 1 point 7.3) La diode D10 est allumée.
- 1 point 7.4) La diode D2 est passante.
- 1 point 7.5) Le transistor est saturé.
- 1 point 7.6) Si le transistor T1 est bloqué, la valeur Vce1 en TP26 = 5V
- 1 point 7.7) Si le transitor T1 est saturé, la valeur de Vce1 en TP26 = 0V
- 2 points 7.8) Si la sortie 2 de U26A = 5V et VD10 = 1.5V I = (5 - 1.5) / 330 = 10.6 ma ou 0.0106 A

QUESTION N°08 10 POINTS INTERFACE PAR OPTOCOUPLEUR 4N35


8.2) Remplir le tableau suivant

Etat de la DEL: A si allumée; E pour éteinte Etat du transistor: B si bloqué; S si saturé

VD0A (V)	VDEL	état de la LED	l (mA) T	ETAT DU RANSISTOR	VT (V)	VXA (V)
0V	0V	E	0	В	5	0
12V	1.5V	A	12.8	s	0	5

6 points 12x0.5

8.3) recopier et compléter le chronogramme suivant:

8.4) L'optocoupleur adapte la tension de 12V en 5V et isole les 2 tensions VD0A et VX A

ACADEMIE DE LILLE - B.E.P. ELECTRONIQUE - ANNEE 1999 EPREUVE EP3 PAGE 9/09
GORRIGE