	Groupement des Académies de l'Est					
CAP	CAP secteur 1 Productique - Maintenance					
	Épreuve Mathématiques et sciences physiques durée : 2 heures					

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

L'usage de calculatrice est autorisée.

Le candidat rédige sur le sujet et rend toutes les feuilles à la fin de l'épreuve.

MATHEMATIQUES (10 points)

EXERCICE 1 (5 points)

Pierre a acheté un téléphone portable sans abonnement rechargeable avec des cartes. Le coût de la minute de communication est de 0,5 €.

1.1. Compléter le tableau de proportionnalité suivant :

durée de communication en minute	1	•••	40	•••	}
Coût en euro	••••	12		25	×

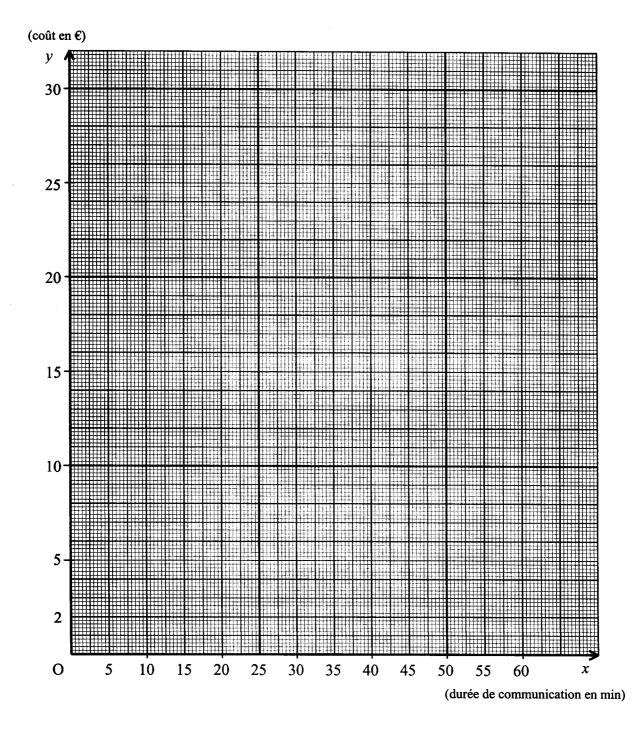
On considère la fonction f définie par f(x) = 0.5 x pour x appartenant à l'intervalle [0; 60].

1.2. Cocher la case correspondante à la nature de la fonction f:

Fonction linéaire

Fonction non linéaire

1.3. Compléter le tableau de valeurs suivant :

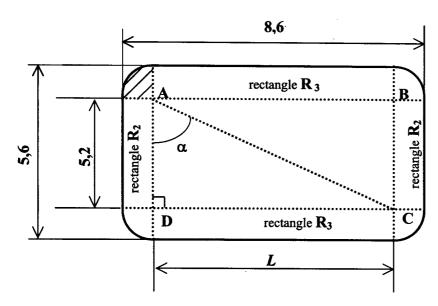

x	0	60
f(x)	•••	•••

- **1.4.** Représenter graphiquement la fonction f en utilisant le repère de la page 2/7.
- 1.5. En laissant apparents les traits utiles à la lecture, utiliser la représentation graphique de la page 2/7 pour déterminer :

1.5.1. le coût en € d'une demi-heure de communication,

1.5.2. le temps de communication pour 30 €.

	Session juin 2003					
CAP	CAP secteur 1 Productique - Maintenance					
	page 2 / 7					


	Session juin 2003				
CAP	CAP secteur 1 Productique - Maintenance				
	page 3 / 7				

EXERCICE 2 (5 points)

La carte de recharge est constituée :

- d'un rectangle ABCD,
- de deux rectangles R₂, de 5,2 cm de longueur,
- de deux rectangles R_{3} , de longueur L,
- de quatre quarts de disque formant les coins arrondis de la carte.

Les cotes sont exprimées en cm

On donne: AC = 9,7

2.1.	Dans le triangle rectangle DAC, calculer L , mesure du segment [DC], en utilisant la relation de Pythagore. Donner le résultat arrondi à $0,1\mathrm{cm}$.
Pou	r la suite du problème, on prendra $L = 8,2$ cm.
2.2.	Calculer la mesure, arrondie à 1°, de l'angle α.
2.3.	Calculer, en cm ² , l' aire A_1 du rectangle ABCD .
2.4.	Calculer, arrondie à 0,01 cm ² , l'aire A_4 d'un disque de rayon $R = 0,2$ cm.
2.5.	Aire d'un rectangle $R_2: A_2 = 1,04 \text{ cm}^2$. Aire d'un rectangle $R_3: A_3 = 1,64 \text{ cm}^2$. En déduire l'aire A de la carte en cm ² .
	$A = \dots \operatorname{cm}^2$

	Session juin 2003				
CAP	CAP secteur 1 Productique - Maintenance				
	page 4 / 7				

SCIENCES PHYSIQUES (10 points)

EXERCICE 3 (3 points)

Une lampe de plafonnier de voiture porte les indications suivantes : 12 V - 5 W.

3.1. Dans le tableau ci-dessous, indiquer à quelles grandeurs électriques correspondent ces indications. Ecrire les unités en toutes lettres.

4	12 V : Grandeur :	Unité :
	5 W : Grandeur :	Unité :
Calculer, as	rrondie à 1 mA, l'intensité I du courant qui tra	verse cette lampe en fonctionnement.
•••••	•••••	<i>I</i> =
Calculer 1'	énergie $m{E}$ consommée par la lampe lorsque cel	le-ci fonctionne pendant 30 minutes.
	•••••	<i>E</i> =
		5 W : Grandeur :

Informations pour l'exercice 3 :

$$P = UI$$
 ; $U = RI$; $P = \frac{E}{t}$

		Groupement des Académies de l'Est	· · · · · · · · · · · · · · · · · · ·	Session juin 2003		
CAP	CAP secteur 1 Productique - Maintenance					
	Épreuve Mathématiques et sciences physiques durée : 2 heures					

EXERCICE 4 (3 points)

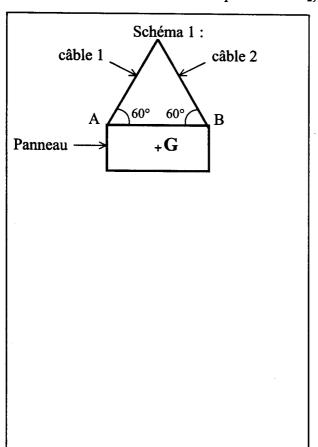
Extrait de la classification périodique

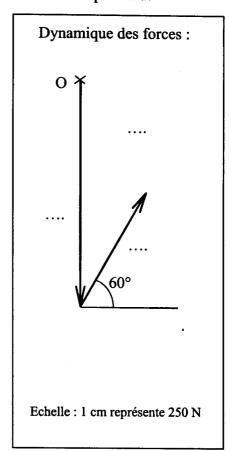
H 1 g/mol hydrogène							He 4 g/mol hélium
3	4	5	6	7	8	9	10
Li	Be	B	C	N	O	\mathbf{F}	Ne
6,9 g/mol lithium	9,0 g/mol béryllium	10,8 g/mol bore	12,0 g/mol carbone	14,0 g/mol azote	16,0 g/mol oxygène	19,0 g/mol fluor	20,1 g/mol néon
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
23,0 g/mol sodium	24,3 g/mol magnésium	27,0 g/mol aluminium	28,1 g/mol silicium	31,0 g/mol phosphore	32,1 g/mol soufre	35,5 g/mol chlore	39,9 g/mol argon

4.1. Compléter le tableau (2 cases) ci-dessous à l'aide de l'extrait de la classification périodique ci-dessus :

Nom	hydrogène	carbone	• • •
Symbole	Symbole H		0
Modèle			
Masse molaire atomique	1 g/mol	12 g/mol	g/mol

4.2. Le propane C₃H₈ brûle complètement avec le dioxygène de l'air pour donner du dioxyde de carbone CO₂ et de l'eau.


Compléter le tableau suivant (7 cases) :


Nom	dioxyde de carbone	eau	propane
Symbole	CO ₂	•••	
Modèle			
constitution	1 atome de carbone	atome d'oxygène	atomes
constitution	2 atomes d'oxygène	atomes d'hydrogène	atomes
Masse molaire moléculaire	44 g/mol	18 g/mol	g/mol

	Session juin 2003			
CAP	secteur 1	Productique - Maintenance Mathématiques et sciences physiques		SUJET
	page 6 / 7			

EXERCICE 5 (4 points)

Une grue permet de maintenir en équilibre un panneau homogène dont la valeur du poids \overrightarrow{P} est 1 500 N. On note $\overrightarrow{F_1}$, l'action du câble 1 sur le panneau et $\overrightarrow{F_2}$, l'action du câble 2 sur le panneau.

5.1. Calculer la masse m du panneau (g = 10 N/kg).

5.2. Représenter le poids \overrightarrow{P} du panneau sur le schéma 1. (Echelle : 1 cm représente 250 N).

5.3. Compléter le tableau des caractéristiques.

Forces	Point d'application	Droite d'action	Sens	Valeur en N
\overrightarrow{P}	•••	•••	•••	1 500
\overrightarrow{F}_1	A	<u></u>	1	870
\overrightarrow{F}_2	•••	•••	•••	

5.4. Le panneau est en équilibre. Compléter le dynamique des trois forces et indiquer le nom des différentes forces représentées.

	Session juin 2003			
CAP	secteur 1	Productique - Maintenance Mathématiques et sciences physiques		SUJET
<u>-</u>	page 7 / 7			

FORMULAIRE CAP SECTEUR INDUSTRIEL

Identités remarquables

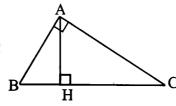
$$(a+b)^2 = a^2 + 2ab + b^2;$$

$$(a-b)^2 = a^2 - 2ab + b^2;$$

$$(a+b)(a-b) = a^2 - b^2$$
.

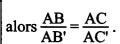
Puissances d'un nombre
$$10^0 = 1$$
; $10^1 = 10$; $10^2 = 100$; $10^3 = 1000$. $a^2 = a \times a$; $a^3 = a \times a \times a$.

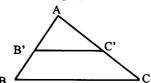
$$a^2 = a \times a$$
; $a^3 = a \times a \times a$.


Proportionnalité

a et b sont proportionnels respectivement à c et d

si
$$\frac{a}{c} = \frac{b}{d}$$
.


Relations métriques dans le triangle rectangle


$$AB^2 + AC^2 = BC^2$$

 $AH \times BC = AB \times AC$

$$\widehat{B} = \frac{AC}{BC};$$
 $\widehat{C} = \frac{AB}{BC};$
 $\widehat{C} = \frac{AB}{BC};$
 $\widehat{C} = \frac{AC}{AB}.$

Énoncé de Thalès (relatif au triangle)

Aires dans le plan

Triangle:
$$\frac{1}{2}Bh$$
.

Trapèze :
$$\frac{1}{2}(B+b)h$$
.

Disque :
$$\pi R^2$$
.

Secteur circulaire angle \alpha en degr\(\epsilon :

$$\frac{\alpha}{360} \pi R^2$$
.

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit d'aire de base B et de hauteur h :

Volume: Bh.

Sphère de rayon R:

Aire: $4\pi R^2$.

Volume: $\frac{4}{2}\pi R^3$.

Cône de révolution ou Pyramide d'aire de base B et de hauteur h

Volume: $\frac{1}{3}Bh$.