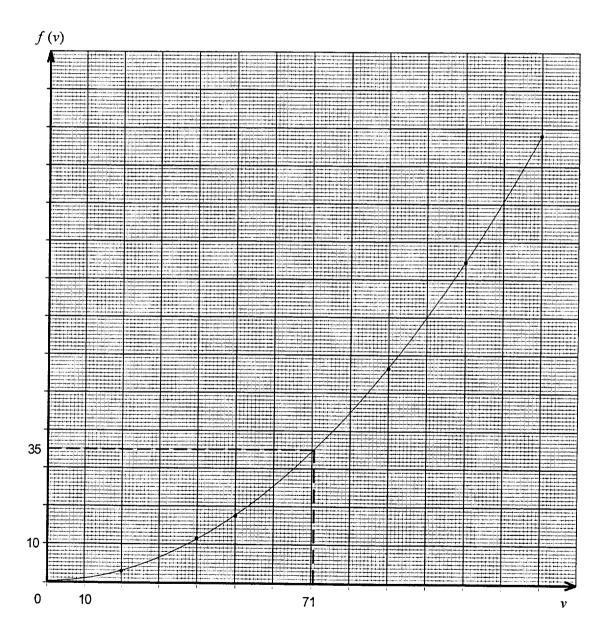
MATHEMATIQUES			
Exe	ercice 1 (2 points)		
1) l	= l_0 (1 + \otimes t) = 180 (1 + 1,22 x 10 ⁻⁵ x 40) \approx 180,09 m	1,5 pt	
2) A	2) Allongement du tablier : $180,09 - 180 = 0,09 \text{ m}$		
Exe	rcice 2 (4 points)		
1) d	$y = 0.007 \times 90^2 = 56.7 \text{ m}$	0,5 pt	
2)	a) Tableau de valeurs	1 pt	
	b) Représentation graphique	1,5 pt	
3)	a) Détermination graphique de la vitesse de freinage : $v \approx 70,7$ km/h	0,5 pt	
	b) $35 = 0.007 v^2$ soit $v = \sqrt{35/0.007} \approx 70.7 \text{ km/h}$	0,5 pt	
Exe	rcice 3 (4 points)		
1)	ABC est un triangle isocèle car il a deux côtés égaux AB = AC.	0,5 pt	
2)	a) $\overrightarrow{BAC} = 180 - 2 \times 40 = 100^{\circ}$	0,5 pt	
	b) KM = $\sqrt{150^2 + 260^2} \approx 300 \text{ cm}$	1 pt	
	c) $\tan \hat{\mathbf{K}} = 260 / 150 \operatorname{soit} \hat{\mathbf{K}} \approx 60^{\circ}$	1 pt	
	d) $\cos \widehat{C} = DC/AC$ d'où $DC = AC \times \cos \widehat{C} = 450 \times \cos 40^{\circ} \approx 344,72$ cm		
	BC = DC \times 2 = 344,72 \times 2 \approx 689 cm	1 pt	


Groupement académique du Grand Est	Session 2001		
B.E.P. Secteur 2 - Bâtiment		CORRIGE	
Epreuve : Mathématiques et sciences physiques	Durée : 2 h	1/4	

MATHEMATIQUES - ANNEXE 1

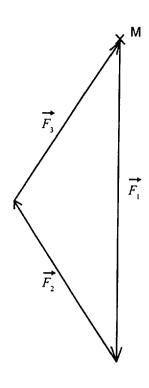
Tableau de valeurs :

ν	0	20	40	50	90	110	130
$f(v) = 0,007 v^2$	0	2,8	11,2	17,5	56,7	84,7	118,3

Représentation graphique de la fonction f:

Groupement académique du Grand Est	Session	
B.E.P. Secteur 2 - Bâtiment		CORRIGE
Epreuve : Mathématiques et sciences physiques	Durée : 2 h	2/4

 1) 1 700 W : Puissance en watt 230 V : Tension en volt 2) a) I = P / U = 1 700 / 230 ≈ 7,4 A b) W = P x t = 1 700 x 0,5 = 850 Wh 3) Puissance nécessaire au fonctionnement des deux appareils : P = 1 700 + 3 500 Puissance maximale disponible : Pmax = 230 x 20 = 4 600 W P > Pmax : le fusible fond et le circuit d'alimentation est coupé. 	0,5 p 0,5 p 0 = 5 200 W
 230 V : Tension en volt 2) a) I = P / U = 1 700 / 230 ≈ 7,4 A b) W = P x t = 1 700 x 0,5 = 850 Wh 3) Puissance nécessaire au fonctionnement des deux appareils : P = 1 700 + 3 500 Puissance maximale disponible : Pmax = 230 x 20 = 4 600 W 	0,5 p 0,5 p 0 = 5 200 W
 a) I = P / U = 1 700 / 230 ≈ 7,4 A b) W = P x t = 1 700 x 0,5 = 850 Wh Puissance nécessaire au fonctionnement des deux appareils : P = 1 700 + 3 500 Puissance maximale disponible : Pmax = 230 x 20 = 4 600 W 	0,5 p
 b) W = P x t = 1 700 x 0,5 = 850 Wh 3) Puissance nécessaire au fonctionnement des deux appareils : P = 1 700 + 3 500 Puissance maximale disponible : Pmax = 230 x 20 = 4 600 W 	0,5 p 0 = 5 200 W
Puissance nécessaire au fonctionnement des deux appareils : P = 1 700 + 3 500 Puissance maximale disponible : Pmax = 230 x 20 = 4 600 W	0 = 5 200 W
Puissance maximale disponible: $Pmax = 230 \times 20 = 4600 \text{ W}$	
xercice 5 (3 points)	
1) Fe + 2 HCl \rightarrow FeCl ₂ + \overline{H}_2	1 pt
2) Le dihydrogène	0,5 pt
3) a) $M(\text{FeCl}_2) = 56 + 2 \times 35,5 = 127 \text{ g/mol}$	1 pt
b) $m = 56 \times 100 / 127 \approx 44.1 \text{ g}$	0,5 pt
tercice 6 (4 points)	
1) $P = m \times g = 85 \times 10 = 850 \text{ N}$	0,5 p
2) a) Droites d'action	1 pt
b) Dynamique des forces	1 pt
c) Tableau des caractéristiques	1,5 p


Groupement académique du Grand Est	Session	2001	
B.E.P. Secteur 2 - Bâtiment		CORRIGE	
Epreuve : Mathématiques et sciences physiques	Durée : 2 h	3/4	

SCIENCES PHYSIQUES - ANNEXE 2

Droites d'action des forces

C A E B

Dynamique des forces

1 cm représente 100 N

Tableau des caractéristiques

Force	Point d'application	Droite d'action	Sens	Valeur (N)
F,	Е		ļ	850 N
$\vec{F}_{_{2}}$	В	\	1	505 N
\vec{F}_3	Α	/	1	505 N

Groupement académique du Grand Est	Session 2001		
B.E.P. Secteur 2 - Bâtiment		CORRIGE	
Epreuve : Mathématiques et sciences physiques	Durée : 2 h	4/4	