Mathématiques - Sciences physiques

ORIGINAL SECTEUR 3 : dominante Electricité - Electronique

Sujet nº 3

- La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.
- * L'usage des instruments de calcul est autorisé.
- * Tous les résultats doivent être justifiés.

LE CANDIDAT DOIT REPONDRE SUR LE SUJET

	ACADE	SESSION 1999	
EXAMEN	N : CAP/BEP Doi	e Durée : 2 h	
Epreuve :	Mathématiques	Coefficient:	
Echelle:	Nb Tirage:	SUJET N° 3	FEUILLE : 1/11

ORIGINAL

EXERCICE 1 (3 points)

Calculer la valeur exacte puis donner un encadrement à 10^{-3} près des nombres x et y.

1)
$$x = \frac{(2 \times 10^{-2})^2 \times 7 \times 10^5 \times (3 \times 10^{-1})^3}{(6 \times 10^3)^2 \times 0.1 \times 10^{-3}}$$

2)
$$y = -\frac{2}{3} \left(\frac{\sqrt{2}}{4} \right)^2 (-\sqrt{3})^3$$

EXERCICE 2 (3 points)

$$A(x) = 5(1-x) - (1-x)(x+3)$$

- 1) Développer, réduire et ordonner A(x).
- 2) Factoriser A(x)
- 3) Résoudre l'équation (1 x)(2 x) = 0

EXERCICE 3 (5 points)

On relève la taille des 250 élèves d'un lycée.

ORIGINAL

1) Compléter le tableau statistique suivant. (ECC signifie effectifs cumulés croissants).

Taille en cm	Effectif n _i	Fréquence f _i en %	ECC 🖈	Centre xi	Produit n _i x _i
[145 ; 155 [10			
[155 ; 165 [73		98		
[165 ; 175 [33,6			
[175 ; 185 [64		*		
[185 ; 195 [
TOTAUX					

2) Calculer la taille moyenne d'un élève par la méthode de votre choix.

3) Que signifie le nombre 98 situé dans la colonne des ECC.

EXERCICE 4 (5 points)

1) Dans le repère ci-dessous, placer les points A (1; 3) et B (-1; 1). Tracer la droite (AB).

* O 1 *

2) Déterminer l'équation de la droite (AB) par la méthode de votre choix.

3) Tracer, dans le même repère, la droite d'équation y = -x + 1, après avoir calculé les coordonnées de deux points C et D, situés sur cette droite.

4) Quelle est la position particulière de ces deux droites.

Vérifier cette réponse par un calcul.

EXERCICE 5 (4 points)

Sur une carte au $1/200\ 000^{\text{ème}}$, trois villes A, B et C forment un triangle tel que : $\widehat{BAC} = 113^{\circ}$

$$AB = 80 \text{ mm}$$

$$AC = 50 \text{ mm}$$

1) Construire ce triangle.

2) Calculer la mesure de BC au mm le plus proche.

3) Calculer, en km, les distances réelles entre ces trois villes.

EXERCICE 6 (3 points)

Equilibrer les équations suivantes :

$$C_3H_8 + O_2 \longrightarrow CO_2 + H_2O$$

$$C_2H_5OH$$
 + O_2 \longrightarrow CO_2 + H_2O

EXERCICE 7 (5 points)

Le butane C₄H₁₀ brûle dans le dioxygène O₂ selon l'équation équilibrée suivante :

$$2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$$

- 1) Nommer les produits de cette réaction.
- 2) Calculer la masse d'une mole d'eau.

3) On brûle 10 L de butane.

Calculer le volume de dioxygène nécessaire et la masse d'eau obtenue.

On donne H = 1g / mol

O = 16 g / mol

C = 12 g / mol

Volume molaire = 24 L

CAP/BEP n° 3 Electricité - Electronique

Session 1999

Mathématiques-Sciences

6/11